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THE PROBLEM OF THE TIME-OPTIMAL TURNING OF A MANIPULATOR* 

S.N. OSIPOV and A.M. FORMAL'%11 

Two types of manipulator that perform three-dimensional motions are 
considered, and the control problem inwhichthe manipulator rotation is 
performed in minimum timeisstudied. The rate of rotation of a rigid 
body about an axis rises as the moment of inertia about this axis falls. 
Manipulator control amounts to a problem of the rotation of a system of 
rigid bodies about an axis. In addition to the angle of rotation, there 
is a further controlled coordinate, whose variation can vary the moment 
of inertia about the axis. Assuming that the moment of inertia can be 
stantaneously "frozen" (thatpulse control signals are possible), the in- 
time-optimal control modes were found in /l, 2/, (see also Akulenko, L.D. 
et al., "Optimization of the control modes of manipulation robots", 
Preprint 218, In-t. Problem Mekhaniki Akad. Nauk SSSR, Moscow 1983). 
In these modes, the rotation occurs in the entire time interval with 
minimum moment of inertia about the axis of rotation. The rotation when 
there are constraints on the control (pulse control signals are not 
permitted) was considered in /3/. Numerical studies there led to the 
false conclusion that, in the optimal motion, with a finite number of 
control switchings, the moment of inertia is also a minimum throughout 
the time interval. Below, for a Set of extreme configurations, a control 
is constructed for the two types of manipulator, which satisfies the 
Pontryagin maximum principle, when there are constraints on the control 
signals. During its rotation the manipulator section then performs 
oscillations about a position corresponding to minimum moment of inertia 
about the axis of rotation. It is shown that the motion considered in 

/3/, which contains a singular mode with minimum moment of inertia, is 
not optimal. The motion which satisfies the maximum principle is compared 
with it. There can be a singular mode in the optimal motion /4/ only 
when the number of control switchings is infinite. 

1. The mathematical model of a manipulator with an extension pointer, We 
consider a manipulator (Fig.11 with three degrees of motion (1 is the fixed base, 2 is the 
shaft, 3 is the guide, rigidly clamped to the shaft, and 4 is the pointer). The shaft can 
move in a vertical direction and rotate about a vertical axis. The pointer can move horizon- 
tally along a guide. All the components are assumed to be absolutely rigid bodies. Since 
the equation for the manipulator vertical movement is separate from the ramining equations, 
we shall only consider the equations that describe the manipulator rotation and the pointer 
extension 

Here, r~) is the angle of shaft rotation, L‘ is the pointer extension, i.e., the distance 
from the axis Of rotation to the pointer centre of mass (the point 0), m is the pointer mass, 
and I is the sum of the shaft plus guide moment of inertia about the axis of rotation and the 
moment of inertia of the pointer about the vertical through its centre of mass. The control 
signals are the moment M about the shaft axis of rotation and the force F extending the 
pointer. They have the constraints 

I M WI < Jfov I I’- @)I < F,, (h-f,, F, = const) (1.2) 
At the initial instant, let the system be at rest in a given position 

g’(O)=O, rp’(O)=O, rfOi=r,, i(O)=0 U-3) 
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Fig.1 

Our problem is to find the control functions M(L), I:(t) 
such that the manipulator moves in minimum time T to a given 

final state 

'p(T) = o)T, v' (T) _ 0, (I./O 
i-(T) = TT, 1.’ (T) 0 

We change to dimensionless variables 

Henceforth the prime is omitted. 

We also use the notation 

F, m= (F,!M,,) (I/m)'/2 (1.6) 

Using (1.5) and (1.6), relations (1.2) take the form 

I .W (t)I -< 1, I F (t)I -‘: F, 
We change to the new variables 

YI = V? Y, == cp' (T f mr'), ya ~: )', y, ~: 1.’ (1.7) 
The primes here denote differentiation with respect to dimensionless time, and 112 is the 

angular momentum about the vertical axis. 

In Cauchy's form the equations of motion (1.1) are 

yl' -= Y,'(l + ys"), y; = :I2 (1.8) 

Ya’ ~ Y&. I/r’ = y,y,‘!(l I y,*) + F 

The boundary conditions (1.3), (1.4) take the form in variables (1.7): 

YI (V 7 0. y, (0) m: 0, y, (0) :: I‘“, yr (0) :m 0 

Y, (T) VT? Y, (7') z 0. Y,(T) = r,r, Y, (T) 7 0 

Consider the case when the initial and final positions of the pointer are the same, i.e., 

Y, 6)) y Ya (j") (rO I^T) (1.9) 

Under conditions (1.9) the extreme configurations of the manipulator are symmetric to 

one another about 

Pontryaqin's 

We write the system of equations for the conjugate variables 

The optimal control must satisfy the conditions 

M (t) = sign+, (t), F (t) = F, sign +k (t) (1.11) 

If yi (t),~$~ (t) (i = 1,2,3,4) is the solution of system (1.8), (1.10) with certain functions 

M (0, F (Q, then -_y,(T - t), Y, (T - t), Y, (T - t), -_y, (T - t), $1 (T - Q? --1v* (T - t)? -$:,(T - t). 

$4 (T - 0 are also the solution of this system with functions _ M(T- t), F(T - t). 

Under conditions (1.9) we shall henceforth seek the solution of the problem that has the 

symmetry properties 

Y, (t) r: VT - Y, (T - t)> Yz (t) = Y, (T - t) (1.12) 

Y, (L) = Y, (T - t)? Y4 (1) = -Y4 (T - t) 
M (t) = -M (T - t), F (t) = F (T - t) 

$1 (t). = % (T - t)? $2 (t) = -% (T - t) 

$3 (t) = --a (T - 41 $4 (4 = Ilr (T - t) 

Notice that, corresponding to the above time-optimal problem, we have the problem of 

maximizing the angle of rotation Y, (T) for a given time T. 
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2. Simplified equations of motion. Consider the case when the non-linear term 
describing the centrifugal force can be neglected in the last equation Of (1.8). This is 

possible when the shaft rotates slowly and the control force F is much greater in absolute 
value than the centrifugal force. Then, Eqs.Cl.8) take the form 

Y; = y&l + Y,~), Y,' = M, Y,' = ~1, ~4' = F (2.1) 

The equations for the conjugate variables now become 

The last two equations of (2.1) are separated, so that it is easier to study system (2.1) 
than the complete system (1.8). 

For the simplified Eqs.(2.1), the optimal control is likewise described by (1.11). It 
follows from (2.1), (2.2), and (1.11) that, when Yz (0) = y, (T), the optimal control M (t) 
has just one switching, which occurs at the instant T:2. The form of control F(t) depends 
on the ratios between the parameters f;',, (CT, and )'". 

The moment of inertia of the system relative to the shaft axis of rotation is a minimum 
when the centre of mass 0 of the pointer is on this axis. The manipulator motion during the 
finite time interval when the cen'cre of mass of the pointer remains on this axis will be 
called singular (Fig.2). The relevant control F(t)- 0 in this interval will also be 
called singular. With the motion shown in Fig.2, the centre of mass of the pointer coincides 
with the axis of shaft rotation for a minimum time t, (y3(t,) z= J,~(&) = 0). By Eqs.(2.1), the 
control F (4 which realizes this pointer displacement has one switching at the instant 
t,i% (Fig.2). After this movement the shaft rotates with the pointer fixed, up to the instant 

f, (singular motion). With t, < t x<t, the motion is symmetric to the motion when o,<t<1, 
(see (1.12)). The control 81(t) has one switching at the instant ri2. 

The necessary and sufficient condition for the singular mode to be possible is that the 
ratio between the parameters F, and r0 should be such that the pointer centre of mass can 
reach the axis of shaft rotation at zero velocity during the manipulator rotation through the 
angle 9~. This ratio is found by integrating system (2.1) and is given by 

2a< cpTF,, a= arctgr, -2arctgrj,r, - r/K >: 

-$I* 1+(1+1/'0)2 
I-+ {l-,tiG), 

-I- arctg(I/<-- I)+ arctg(l/c+ 1) 
I 

(2.3) 

The time of motion shown in Fig.2 is given by 

Fig.2 

Let the motion satisfy the maximum principle. The 
control M (t) has one switching, so that, if it satisfies 
the first of conditions (l.ll), then $,=const> 0, Y,(t)> 
0 for O,<t<r. In this motion we have y, = 0 for 
$1 < t < te and Y3>0 for t c It,, t,l. Thus I@~. (t) ES 0 
for t, < t < t, and &' (t) > 0 for t Eft,, t,?. The 
solutions of Eqs. (2.2) have the symmetry property 

(1.12), since the motion has this property. Then, 
for t, < t < t, the function $S(t)= 0, while for O,< 
t < t, the function qS (t) is strictly monotonically 

increasing and negative, and for tS < t <z it is strictly monotonically increasing and 
positive. 

By the last equation of system (2.2), the function q&(t), which is symmetrical about 
the line t = rl2, either nowhere vanishes, or else vanishes only when t, < t< t, (ident- 
ically), or has just two isolated zeros. In none of these conceivable cases does the control 
p (0 shown in Fig.2 satisfy the second of conditions fl.ll), i.e., the maximum principle. 

For certain values of the parameter F,~l0.5; 121, (PT =; 2, and a number of values of PO, 
we can construct numerically the control F (f), M (t), and the corresponding motion which 
satisfies the maximum principle. The algorithm for constructing the motion is as follows. 
We will first construct the admissible control F(t), symmetrical about the line t = T/2, 
with three intervals of constancy, and the M(t) (Figs.3, 4) which takes the manipulator from 

'c = 2 [rpr + clr,,/F, - 2zlF,1'J~ 

It is claimed incorrectly in /3/, for the system of 
Eqs. (1.8), that a motion similar to that shown in Fig.2 
is time-optimal. we shall first show that this motion 
does not satisfy the maximum principle for the simplified 
system (2.11, and hence it not optimal for it. (We 
show in Sect.3 that the motion is likewise not optimal 
for the initial system (1.8)). 
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the initial to the final position. 

0, where t, 
Then, using the conditions I&, (2'12) : 0, IJI~ (T/Z) = 0, Qr (t,) = 

is the instant of first switching the control, we find numerically the initial 
values of the conjugate variables. By solving systems (2.1) and (2.2) simultaneously, we 
show that the control in question satisfies the maximum principle. 

1 F(t) I 
I F(t) I 

Fig.3 Fig.4 

Fig.5 

Let us describe the results of a numerical study 

when F1 = 2.5. 

For 70 > 1. 553, condition (2.3) does not hold, and 

the motion shown in Fig.2 is impossible. The motion 

which satisfies the maximum principle for these values of 

TO? together with the control F @) and the conjugate 

variables $2 (2). $4 (t) I are shown in Fig.3 (rO= 1.63). In 

this motion, the centre of mass of the pointer does not 

reach the axis of shaft revolution. 

For r0 z 1. 553 , relation (2.3) becomes an equation. 
In the motion which satisfies the maximum principle, 

r(Ti2) = 0, while the derivatives $4‘ (T/2) = qr" (T!2) = %"' 

(T/2) = 0. 
On further reducing r0 oscillations of the pointer 

centre of mass about the vertical occur in the motion. 

A small depression appears in the graph of $4 (fl at 
t = T/2. For r0 = 1.42, the motion and the control F (t) 
are shown in Fig.4; the time T = 3. 091; a motion that 

includes a singular piece occurs during time r= 3.096. 

F (1) shown in Fig.4 occurs later than the first switching The first switching ofthecontrol 

of the control with a singular piece (+I > fJ2) which is shown in Fig.2. On further reducing 

T,, the depression in the graph of +,r (1) increases, and for r,zi.389 the bottom of the 

depression touches the abscissa axis ($&(T/2)= 0). The change in the nature of % (t) as r. 

decreases can be seen from Fig.5, where we plot curves with rO= 1.63;1.47; and 1. 389. The 

behaviour of $&(t) suggests that, for r,<i.389, extra switchings of the control F (4 must 

appear (no numerical studies were made with r,, < 1.389. 

Some of our numerical results are shown in Table 1. The first four rows contain the 

results for the simplified system, and the last two, the results for the complete system, 

described in Sect.3. In the table, rO1 is the upper bound of the values of rO at whicll a 

singular mode is possible, r02 is the lower bound of the r,, for which the optimal control 

contains three intervals of constancy, r,,' is the value of rO at which the difference 

T-T for the given F, is a maximum, and r and T are the time of singular motion and the 

optimal time with To = To'. It is clear from the table that, as F, increases, t - T increases. 
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For F, = 11.7, it amounts to roughly 1% of the time 2. 

F, 7.1 rcz I r.’ I T I (r - T).lO’ 

1 1 0.522 1 0.482 1 0.487 1 2.8778 1 0.6 
i5 
6.7 
11.7 
1 

..- 
1.553 
6.85 
17.49 
0 525 

1.389 
5.77 
14.56 
6.478 

3.091 
3.867 
4.529 
2.87886 

2: 
43 
0.58 

2.5 I.61 1 1.388 1 1.45 1 3.10744 1 3.5 

For the simplified system of equations, the corresponding problem of maximizing the angle 

of rotation with a fixed T amounts to maximizing the integral 

T 

s f (5) dE 
1 i Y32(5) ’ ‘(t)= 

O<t<TT/Z 

0 
‘,-,I T/Z<t<T \ ’ 

where ys(t) is the solution of the equation y,"= F with 1 F(t) I< F1 and the boundary con- 

ditions Y, (0) = Y, (T) = ro. Y; (0) = Y,’ CT) = 0. 

This recalls Fuller's problem /6, 7/, in which, for sufficiently small r,,, the optimal 

motion contains a singular mode which is bordered on both sides by chattering modes. In each 

ofthelatter the control has an infinite number of switching instants which accumulate to a 

condensation point. It was shown in /4/ that a similar situation occurs in the time-optimal 

problem for sufficiently small values of rO. 

3. The complete equations. We consider the initial system of equations (1.8) and a 

motion similar to that shown in Fig.2. The control M(t) then switches once at the instant 

7/2. The pointer centre of mass then comes into coincidence with the shaft axis of rotation 

in minimum time 1,. This motion may not be time-optimal (though the contrary is claimed in 

/3/j, since the necessary condition for optimality of the conjugation of the singular and non- 

singular pieces of the control F (t) at its points of discontinuity t,, t, is not satisfied 

(/8, p.239; /9, p.234/; /lo, ll/). This condition may be expressed as follows. For the 

conjugation to be optimal, its first negative value at the point of conjugation of the singular 

and non-singular controls must be taken by the quantity 

for an odd value of the index k. Analytic evaluation of the derivatives shows that, in the 

interval [t,,t,], L = 0 for k = 1 and L = -22y&, for k = 2. Since y, (t)>O and 4, = coast> 

0 for 0~ t<r, then L< 0 for k = 2. 
Note that this necessary condition for optimality does not hold for the simplifiedsystem 

(2.1), (2.2). If M(t) has one switching, thenthecontrol F(t), which has any finite 

number of switchings and contains a singular piece, likewise may not be optimal. 
As a result of numerical studies of system (1.8), carried out for the values F,= 1, and 

2.5, and mr = 2, we obtained the control and the corresponding motion that satisfies the maxi- 

mum principle. If F, = 2.5 and ro> 1.61, then the control F(t) is switched twice, and the 
pointer centre of mass does not reach the axis of rotation during the motion. Similar motions 
were obtained in /3/. For r,=:l.Bi, the pointer centre of mass touches the axis of shaft 
rotation during the motion. For 1.388 <r,, < 1.61, the control F (0 again switches twice, 
and the centre of mass performs oscillations about the axis of shaft rotation, though it does 

not stay on the axis for a finite time, as was claimed in /3/. The functions yi (I), +i (t) (i = 1, 2, 
3, 4), M (& and F (t) behave qualitatively in the same way as for the system of Eqs.(2.1) and 
(2.2) (Figs.3-5). 

In the same way as for the simplified equations, the variation of q*(t) as T,, decreases 
suggests the appearance of new switchings of the control F(t) (Fig.5). 

Some of our numerical results are shown in the last two rows of Table 1. It can be seen 
that calculations for the simplified andthe complete systems give closely similar results. 
With the chosen manipulator parameters, the relative time advantage of the motion with oscil- 
lations over the motion with a singular piece is small. 

It seems that we can explain as follows the fact that, in oscillatory motion of the 
pointer (Fig.Q), the manipulator movement is faster than in the case of motion with a singular 
piece (Fig.2). When the pointer centre of mass is in coincidence with the axis of rotation 
for a minimum time, the pointer initially accelerates and then brakes. During the acceleration 
the moment of inertia falls at a maximum rate, while during the braking the moment of inertia 
falls more slowly. In the case of motion with oscillations, the moment of inertia likewise 
falls initially at a maximum rate, but the braking occurs later than in the case of depature 
to a singular mode. In the case of motion with oscillations, the moment of inertia is, so to 
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speak, less "on average" 

preferable to the latter 

4. A manipulator 

Fig.6 

ation due to gravity. 

than with motion with a singular piece, and the former motion is 
in the sense of time-optimality. 

with a rotating section. Consider (Fig.6) a manipulator that 
consists of a moving base 1, hinged to a fixed bed 2, and a Sect.3. 

The base and section are connected by a cylindrical hinge whose 

axis is horizontal. The manipulator has two degrees of freedom, 
corresponding to rotation of the base about a vertical axis and 

rotation of the section about the horizontal. As the generalized 
coordinates we take the angle of base rotation (p, and the angle 

of section rotation cpr, measured from the vertical (Fig.6). The 
system control is by the moments of the forces M and M', applied 

to the axes of base and section rotation. 

The equations of motion of the system are (see Osipov S.N., 
"The problem of control of manipulator rotation", Dep. at VINITI 

31.12.86, No.489-B 87, Moscow, 1987) 

[J + B + (mp2 + C - B) sin' cpll cp" + (mp2 + C - 
B) sin 2cp,cp,‘cp’ = M 

(mp2 + A) ‘pl” - I/, (mp2 + C - B) sin 2cp1’p” = M’ + mgp sin q1 

Here, 3 is the base moment of inertia about the vertical, m 

is the section mass, p is the distance from the axis of section 

rotation to its centre of mass E, while A, B, and C are the moments 
of inertia of the section in the principal central axesofinertia, 

A is the moment of inertia about a line parallel to the axis of 

section rotation and through the point E, B is the momentofinertia 

about the longitudinal axis of the section, and g is the acceler- 

We impose on the control moments the bounds 

I M (t) / < M,, I M’ (t) I < M,’ 
At the initial instant the system is in the configuration 

rp (0) = 0, 'F' (0) = 0, 'PI (0) = 'pro, 'p,' (0) = U 

We wish to find the control functions such that the system passes in minimum time T into 

the final configuration 

Additionally, we take 'pr (0):= rpl(T). This condition is similar to (1.9), and under it we 

seek the solution that satisfies the symmetry conditions (1.12). 

Studies similar to the above for a manipulator with extension pointer were made for a 

manipulator with rotating section. A change of variables similar to (1.5), (1.7) was made, 

We studied the simplified equations obtained after neglecting the moment of the centrifugal 

force. The singular motion for this system is rotation of the base with a vertical disposition 

of the section. It was shown analytically that the motion with one switching of the control 

moment M(t) and a finite number of switchings of the moment M' (t) containing a singular 

piece, may not be optimal either for the simplified or for the complete system of equations. 

For both these systems we constructed numerically, for certain values of the dimensionless 

parameters, the control and motion that satisfy the Pontryagin maximum principle. The section 

then performs oscillations about the vertical, while the moment M(t) switches once. 

Comparison of the results for the two types of manipulator shows that their optimal 

motions are of the same type. 
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MODES WITH SWITCHINGS OF INCREASING FREQUENCY IN THE 
PROBLEM OF CONTROLLING A ROBOT* 

V.F. BORISOV and M.I. ZELIKIN 

Trajectories that are optimal with respect to high-speed response are 
constructed for a system for controlling a two-component manipulator (a 

robot). It is shown that when the initial conditions lie within a certain 

open region of the phase space, all optimal trajectories will have a 
segment of switchings of increasing frequency (SIF), i.e. a segment in 

which the control will undergo an infinite number of switchings in a 

finite time interval. 

The synthesis of the optimal control in the R* plane containing the 

mode of SIF was first constructed by Fuller /l/. It was shown in /2/ that 
the synthesis is structurally stable in the sense that adding terms of 

higher order of smallness to the integrand and to the right-hand sides 

of the system of differential constraints does not affect the qualitative 

pattern of the optimal synthesis in the neighbourhood of the origin of 

coordinates. 

The present paper explains that the synthesis in the problem of optimal 
control (relative to the high speed response) of the motion of the robot 

appears, in a certain sense, a direct product of the synthesis appearing 

in the Fuller problem and of the synthesis in the simplest problem of high- 
speed response t/3/, pp.38-47). The special aspect of the present paper 
consists of the proof of the proposition that switching surface is a 

piecewise-smooth manifold. The presence of the SIF mode is connected only 
with the fact that every trajectory intersects this surface an infinite 
number of times. In existing papers, the piecewise smoothness of the 
switching curve was proved for the two-dimensional problems using the SIF 
mode only for problems admitting of a one-parameter group of symmetries 

/l, 4-6/. A proof of the presence of SIF was given in /7, 0/. 

1. Formulation of the problem. The problem of controlling the robot can beformu- 
lated in two ways /9/. 

about its axis. 
A movable element is fixed on a massive vertical cylinder rotating 

In the first version the movable element has the form of a bar rotating in 
the vertical plane, and in the second version it takes the form of a horizontal advancing 
arrow. The system has two control parameters, the moment acting onthevertical cylinder, and 
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